AWS Well-Architected Framework

November 2018

dWsS

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Notices

This document is provided for informational purposes only. It represents AWS’s current
product offerings and practices as of the date of issue of this document, which are
subject to change without notice. Customers are responsible for making their own
independent assessment of the information in this document and any use of AWS’s
products or services, each of which is provided “as is” without warranty of any kind,
whether express or implied. This document does not create any warranties,
representations, contractual commitments, conditions or assurances from AWS, its
affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its
customers are controlled by AWS agreements, and this document is not part of, nor
does it modify, any agreement between AWS and its customers.

Contents

Introduction
Definitions
Edge Layer
Provisioning Layer
Communication Layer
Ingestion Layer
Analytics Layer
Application Layer
General Design Principles
Scenarios
Device Provisioning
Device Telemetry
Device Commands
Firmware Updates
The Pillars of the Well-Architected Framework
Operational Excellence Pillar
Security Pillar
Reliability Pillar
Performance Efficiency Pillar
Cost Optimization Pillar
Conclusion
Contributors

Document Revisions

© ©O© 00 o Ol A W N DN P P

o O o o A W DN P P P PP
W W w N OO 0o w oot A N O

Abstract

This paper describes the IoT Lens for the AWS Well-Architected Framework.
The document covers commonly encountered IoT use cases and identifies key
solution elements to ensure that your workloads are architected according to
established best practices.

Amazon Web Services — AWS Well-Architected Framework

Introduction

The AWS Well-Architected Framework helps you understand the pros and cons
of decisions you make while building systems on AWS. By using the Framework,
you will learn architectural best practices for designing and operating reliable,
secure, efficient, and cost-effective systems in the cloud. It provides a way for
you to consistently measure your architectures against best practices and
identify areas for improvement. We believe that having well-architected systems
greatly increases the likelihood of business success.

In this “Lens” we focus on how to design, deploy, and architect your IoT
workloads (Internet of Things) on the AWS Cloud. To implement a well-
architected IoT application, you need to follow well-architected principles,
starting from the procurement of connected physical assets (things) to the
eventual decommissioning of those same assets in a secure, reliable, and
automated fashion. In addition to covering AWS Cloud best practices, this
document also articulates the impact, considerations, and recommendations for
connecting physical assets to the Internet.

For brevity, we have only covered details from the Well-Architected Framework
that are specific to your IoT workloads. You should still consider best practices
and questions that have not been included in this document when designing
your architecture. We recommend that you read the AWS Well-Architected
Framework whitepaper.

This document is intended for those in technology roles, such as chief
technology officers (CTOs), architects, developers, embedded engineers, and
operations team members. After reading this document, you will understand
AWS best practices and strategies for IoT applications.

Definitions

The AWS Well-Architected Framework is based on five pillars— operational
excellence, security, reliability, performance efficiency, and cost optimization.
When architecting technology solutions, you make informed tradeoffs between
pillars based upon your business context. For IoT workloads, AWS provides
multiple services that allow you to design robust architectures for your
applications. Internet of Things (IoT) applications are comprised of many
devices (or things) that securely connect and interact with complementary

dWs

Page 1

https://aws.amazon.com/well-architected
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

Amazon Web Services — AWS Well-Architected Framework

cloud-based components to deliver business value. IoT applications gather,
process, analyze, and act on data generated by connected devices. This section
presents an overview of the AWS components that are used throughout this
document to architect IoT workloads. There are six distinct logical layers you
should consider when building an IoT workload:

e Edge layer

e Provisioning layer

¢ Communications layer
e Ingestion layer

e Analytics layer

e Application layer

The edge layer of your IoT workloads consists of the physical hardware of your
devices, the embedded operating system that manages the processes on your
device, and the device firmware, which is the software and instructions
programmed onto your IoT devices. The edge is responsible for sensing and
acting on other peripheral devices. Common use cases are reading sensors
connected to an edge device or changing the state of a peripheral based on a
user action, such as turning on a light when a motion sensor is activated.

Amazon FreeRTOS is a real time operating system for microcontrollers that
lets you program small, low-power, edge devices while leveraging memory-
efficient, secure, embedded libraries.

AWS Greengrass is a software component that allows you to run MQTT local
routing between devices, data caching, AWS IoT shadow sync, local AWS
Lambda functions, and machine learning algorithms.

The provisioning layer of your IoT workloads consists of the Private Key
Infrastructure (PKI) used to create unique identities of your devices, the process
by which firmware is first installed on devices, and the application workflow

dWs

Page 2

Amazon Web Services — AWS Well-Architected Framework

that provides configuration data to the device. The provisioning layer also is
involved with the ongoing maintenance and eventual decommissioning of
devices over time. IoT applications need a robust and automated provisioning
layer so that devices can be added and managed by your IoT application in a
frictionless way. When you provision IoT devices you need to install X.509
certificates onto them.

By using X.509 certificates you can implement a provisioning layer that
securely creates a trusted identity for your device that can be used to
authenticate and authorize against your communication layer. X.509 certificates
are issued by a trusted entity called a certificate authority (CA). X.509
certificates are an ideal identity mechanism for constrained devices with limited
memory and processing capabilities.

AWS Certificate Manager Private CA helps you automate the process of
managing the lifecycle of private certificates for IoT devices using APIs. Private
certificates, such as x.509 certificates, provide a secure way to give a device a
long-term identity that can be created during provisioning and used to identify
and authorize device permissions against your IoT application.

AWS 10T Just In Time Registration (JITR) enables you to
programmatically register devices to be used with managed IoT platforms such
as AWS IoT Core. With Just-In-Time-Registration, when devices are first
connected to your AWS IoT Core endpoint, you can automatically trigger a
workflow that can determine the validity of the certificate identity and
determine what permissions it should be granted.

The Communication layer handles the connectivity, message routing among
remote devices, and routing between devices and the cloud. The
Communication layer lets you establish how IoT messages are sent and received
by devices, and how devices represent and store their physical state in the cloud.

AWS 10T Core helps you build IoT applications by providing a managed
message broker that supports the use of the MQTT protocol to publish and
subscribe IoT messages between devices.

dWs

Page 3

Amazon Web Services — AWS Well-Architected Framework

The AWS IoT Device Registry helps you manage and operate your things. A
thing is a representation of a specific device or logical entity in the cloud. Things
can also have custom defined static attributes that help you identify, categorize,
and search for your assets once deployed.

With the AWS IoT Device Shadow service, you can create a data store that
contains the current state of a particular device. With the Device Shadow
service, you can maintain a virtual representation of each of your devices you
connect to AWS 10T as a distinct device shadow. Each device's shadow is
uniquely identified by the name of the corresponding thing.

With Amazon API Gateway, your IoT applications can make HTTP requests
to control your IoT devices. IoT applications require API interfaces for internal
systems, such as dashboards for remote technicians, and external systems, such
as a home consumer mobile application. With Amazon API Gateway, [oT
customers can facilitate creating common API interfaces without provisioning
and managing the underlying infrastructure.

A key business driver for IoT is the ability to aggregate all the disparate data
streams created by your devices and transmit the data to your IoT application in
a secure and reliable manner. The ingestion layer plays a key role in collecting
and aggregating important sensor information from devices while decoupling
the flow of data with the communication between devices.

With AWS IoT rules engine, you can build IoT applications such that your
devices can interact with AWS services. AWS 10T rules are analyzed and actions
are performed based on the MQTT topic stream a message is received on.

Amazon Kinesis is a managed service for streaming data, enabling you to get
timely insights and react quickly to new information from IoT devices. Amazon
Kinesis integrates directly with the AWS IoT rules engine, creating a seamless
way of bridging from a lightweight device protocol of a device using MQTT with
your internal IoT applications that use other protocols.

Similar to Kinesis, Amazon Simple Queue Service (Amazon SQS) should
be used in your IoT application to decouple the communication layer from your
application layer. Amazon SQS enables an event-driven, scalable ingestion

dWs

Page 4

Amazon Web Services — AWS Well-Architected Framework

queue when your application needs to process IoT applications once where
message order is not required.

One of the benefits of implementing IoT solutions is the ability to gain deep
insights and data about what's happening in the local/edge environment. A
primary way of realizing contextual insights is by implementing solutions that
can process and perform analytics on IoT data.

Storage Services

IoT workloads are often designed to generate large quantities of data. You will
want to ensure this discrete data is transmitted, processed, and consumed
securely, while being stored durably.

Amazon S3 is object-based storage engineered to store and retrieve any amount
of data from anywhere on the Internet. With Amazon S3, you can build IoT
applications that store large amounts of data for a variety of purposes:
regulatory, business evolution, metrics, longitudinal studies, analytics machine
learning, and organizational enablement. Amazon S3 gives you a broad range of
flexibility in the way you manage data for not just for cost optimization and
latency, but also for access control and compliance.

Analytics and Machine Learning Services

Once your IoT data has reached a central storage location, you can begin to
unlock the value of IoT by implementing analytics and machine learning on
device behavior. With analytics systems, you can begin to operationalize
improvements in your physical hardware by making data-driven decisions
based on your analysis. With analytics and machine learning, IoT systems can
implement proactive strategies like predictive maintenance or anomaly
detection to improve the efficiencies of the system.

AWS IoT Analytics makes it easy to run sophisticated analytics on volumes
on IoT data. AWS IoT Analytics manages the underlying IoT data store while
you can build different materialized views of your data using your own
analytical queries or Jupyter notebooks.

dWs

Page 5

Amazon Web Services — AWS Well-Architected Framework

Amazon Athena is an interactive query service that makes it easy to analyze
data in Amazon S3 using standard SQL. Athena is serverless, so there is no
infrastructure to manage, and customers pay only for the queries that they run.

Amazon SageMaker is a fully managed platform that enables you to quickly
build, train, and deploy machine learning models in the cloud or down to the
edge layer. With Amazon SageMaker, IoT architectures can develop a model of
historical device telemetry in order to infer future behavior.

One of the key value propositions of using AWS 10T is provided by the ease with
which data generated by IoT devices can be consumed by other relevant cloud
native capabilities. These connected capabilities include features from serverless
computing, relational databases to create materialized views of your IoT data,
and management applications to operate, inspect, secure, and manage your IoT
operations.

Management Applications

The purpose of management applications is to create scalable ways to operate
your devices once they are deployed in the field. Common operational tasks
such as inspecting connectivity state of a device, ensuring device credentials are
configured correctly, and querying devices based on their current state must be
in place prior to launch so that your system has the required visibility to
troubleshoot applications.

AWS IoT Device Defender is a fully managed service that audits your device
fleets, detects abnormal device behavior, alerts you to security issues, and helps
you investigate and mitigate commonly encountered IoT security issues.

AWS IoT Device Management eases the organizing, monitoring, and
managing of IoT devices at scale. AWS IoT Device Management enables you to
group devices for easier management. You can also enable real time search
indexing against the current state of your devices through Device Management
Fleet Indexing. Both Device Groups and Fleet Indexing can be used in
conjunction with Over the Air Updates (OTA) in determining which target
devices need to be updated.

dWs

Page 6

Amazon Web Services — AWS Well-Architected Framework

User Applications

In addition to managed applications, other internal and external systems will
need different segments of your IoT data for building different applications. To
support end-consumer views, business operational dashboards, and other net-
new applications you will build over time, you will need several other
technologies that can receive the required information from your connectivity
and ingestion layer and format them to be used by other systems.

Database Services — NoSQL and SQL

While a data lake can function as a landing zone for all of your unformatted IoT
generated data, to support all the formatted views on top of your IoT data, you
will need to complement your data lake with structured and semi-structured
data stores. For these purposes, you should leverage both NoSQL and SQL
databases. These types of databases enable you to create different views of your
IoT data for distinct end users of your application.

Amazon DynamoDB is a fast and flexible NoSQL database service for IoT
data. With IoT applications, customers often require flexible data models with
reliable performance and automatic scaling of throughput capacity.

With Amazon Aurora your IoT architecture can store structured data in a
performant and cost-effective open source database. When your data needs to
be accessible to other IoT applications for predefined SQL queries, relational
databases provide you another mechanism for decoupling the device stream of
the ingestion layer from your eventual business applications, which need to act
on discrete segments of your data.

Compute Services

Frequently, IoT workloads require application code to be executed when the
data is generated, ingested, or consumed/realized. Regardless of when compute
code needs to be executed, serverless compute is a highly cost-effective choice.
Serverless compute can be leveraged from the edge to the core and from core to
applications and analytics.

dWs

Page 7

Amazon Web Services — AWS Well-Architected Framework

AWS Lambda lets you run code without provisioning or managing servers.
Due to the scale of ingestion for IoT workloads, AWS Lambda is an ideal fit for
running stateless, event-driven IoT applications on a managed platform.

General Design Principles

The Well-Architected Framework identifies a set of general design principles to
facilitate good design in the cloud with IoT:

Page 8

Decouple ingestion from processing In IoT applications, the
ingestion layer needs to be a highly scalable platform that can handle a
high rate of streaming device data. By decoupling the fast rate of
ingestion from the processing portion of your application through the use
of queues, buffers, and messaging services, your IoT application can
make several decisions without impacting devices, such as the frequency
it processes data or the type of data it is interested in.

Design for offline behavior: Due to things like connectivity issues or
misconfigured settings, devices may go offline for much more extended
periods of time than anticipated. Design your embedded software to
handle extended periods of offline connectivity and create metrics in the
cloud to track devices that are not communicating on a regular
timeframe.

Design lean data at the edge and enrich in the cloud: Given the
constrained nature of IoT devices, the initial device schema will be
optimized for storage on the physical device and efficient transmissions
from the device to your IoT application. For this reason, unformatted
device data will often not be enriched with static application information
that can be inferred from the cloud. For these reasons, as data is ingested
into your application, you should prefer to first enrich the data with
human readable attributes, deserialize or expand any fields that the
device serialized, and then format the data in a data store that is tuned to
support your applications read requirements.

Ensure devices can regularly send status checks Even if devices
are regularly offline for extended periods of time, the device firmware
should contain application logic that sets a regular interval to send device
status information to your IoT application. Devices need to be active

dWs

Amazon Web Services — AWS Well-Architected Framework

participants in ensuring your application has the right level of visibility,
so by sending this regularly occurring IoT message, your IoT application
can get an updated view of the overall status of a device, but also can
create processes when a device does not communicate within its expected
period of time.

Scenarios

In this section, we will cover some common scenarios related to IoT
applications and how each impacts the architecture of your IoT workload. These
scenarios do not include all IoT scenarios but encompass common patterns in
IoT. We will present a background on each scenario, general considerations for
the design of the system, and a reference architecture of how these scenarios
should be implemented.

In IoT, device provisioning is comprised of several sequential steps. The most
important aspect is that each device needs to be given a unique identity and
then subsequently authenticated by your IoT application using that identity.

As such, the first step to provisioning a device is to install an identity. In IoT, it
is common for applications to use device certificates such as X.509 security
certificates. By default, AWS IoT Core supports X.509 certificates as device
identities. In AWS IoT Core, the device is registered using its certificate along
with a unique thing identifier. The registered device is then associated with an
IoT policy. An IoT policy gives you the ability to create fine-grained permissions
per device. Fine-grained permissions can ensure that one device only has
permissions to interact with its own MQTT topics and messages.

This registration process ensures that a device is recognized as an IoT asset and
that the data it generates can be consumed through AWS IoT to the rest of the
AWS ecosystem. To provision a device, you must enable automatic registration
and associate a provisioning template or an AWS Lambda function with the
initial device provisioning event.

This certificate provisioning mechanism relies on the fact that during
manufacturing the device will receive an initial device certificate, which will be
used to authenticate to the IoT application, in this case AWS IoT. One

dWs

Page 9

Amazon Web Services — AWS Well-Architected Framework

advantage of this approach is that the device can be transferred to another
entity and the registration process can be repeated with the new owner’s AWS
IoT account details.

loT Device

® o
@-g= ©

__ Amazon RDS Amazon DynamoD8 / \ /

Certificate Provisioning Mechanism AWS loT Core

1. Set up the manufacturing device identifier in a relational database or
NoSQL table

2. The device connects to API Gateway and requests registration from the
CPM. The request is validated.

3. Lambda requests X.509 certificates from your Private Certificate Authority
(CA).

4. Your provisioning system registered your CA with AWS IoT Core
5. API Gateway passes the device credentials to the device.

6. The device initiates the registration workflow with AWS IoT Core.

There are many uses cases (such as industrial IoT) where the value for IoT is in
collecting telemetry on how a machine is performing. This telemetry needs to be
collected from the machine and uploaded to an IoT application. The main
benefit of sending telemetry is the ability of your cloud applications to use this

dWs

Page 10

Amazon Web Services — AWS Well-Architected Framework

data for analysis and to interpret optimizations that can be made to your
firmware over time.

Telemetry data is read-only that is collected and transmitted to the IoT
application. Since telemetry data is passive, the MQTT topic for telemetry
messages should not overlap with any topics that relate to IoT commands. For
example, a telemetry topic could be data/device/sensortype where any MQTT
topic that begins with “data” is considered a telemetry topic.

From a logical perspective, we can define several scenarios for capturing and
interacting with device data telemetry.

PUBLISH: bulb/1001

{ “brightness™: 75)
«g+ JE SUBSCRIBE: bulb/1001

loT thing AWS loT 1oT thing
lightbulb Message Broker display

? PUBLISH: bulb/1001 SUBSCRIBE: bub/1001
{ “brightness™: 75 }
loTthing oY thing PUBLISH: buib/1002
- . “bri T H
lightbulb lightbulb {"Deightriess’=30) AWS foT SUBSCRIBE: bui/1002

Message Broker

PUBLISH: lightsensor/5551 SUBSCRIBE: lightsensor/5551
S { “opacity”: 60} ACTION: IGNORE
(& L
B loT light AWS loT SUBSCRIBE: lightsensor/5551
nsor Message Broker ACTION: outdoor lights ON

? PUBLISH: house1/rm1/bulb/1001
“brightness”: 0}

1oT thing lightbulb

©
o

o

=}

_— $ SUBSCRIBE: housel/rm1/#

PUBLISH: house1/rm1/ms/8101 AWS loT IoT thing
{ "modetect™: “Yes” } Message Broker display
loT thing motion sensor

1. One publishing topic and one subscriber. For instance, a smart light bulb
that publishes its brightness level to a single topic where only a single
application can subscribe.

2. One publishing topic with variables and one subscriber. For example, a
collection of smart bulbs publishing their brightness on similar but
unique topics. Each subscriber can listen to a unique publish message.

3. Single publishing topic and multiple subscribers. In this case, a light
sensor that publishes its values to a topic that all the light bulbs in a
house subscribe to.

dWs

Page 11

Amazon Web Services — AWS Well-Architected Framework

4. Multiple publishing topics and a single subscriber. For instance, a
collection of light bulbs with motion sensors. The smart home system
subscribes to all of the light bulb topics, inclusive of motion sensors, and
creates a composite view of brightness and motion sensor data.

When you are building an IoT application, you will need the ability to interact
with your device through commands remotely. Whether you are manufacturing
devices in the industrial vertical where controls may only be to request specific
data from a piece of equipment or in the smart home vertical where you are
using automation to schedule an alarm system remotely, commands are a
standard part of an overall IoT application.

With AWS IoT Core, you can implement commands using MQTT topics or the
AWS I0T Device Shadow to send commands to a device and receive an
acknowledgment of when a device has executed the command. The device’s
shadow is commonly used in cases where a command needs to be persisted in
the cloud even if the device is currently not online. The device can then retrieve
any missed shadow information by requesting the latest.

~

Device Message Message Broker
o «w»
: @
- } Protocol —
o Endpoint .
Topics

deviceID/commands
dEUiEEID.-"EummaHdS.-"ECU

Acknowledgment

AWS loT Device Shadow Service

IoT solutions that leverage the Device Shadow service in AWS IoT Core can
manage command requests in a reliable, scalable, and straightforward fashion.
The Device Shadow service follows a prescriptive approach to both the
management of device-related state and how the state and state changes are

dWs

Page 12

Amazon Web Services — AWS Well-Architected Framework

communicated. This approach describes Device Shadows service that uses a
JSON document to store a device's current state, desired future state, and the
difference between current and desired states.

3]
O

Device Message 4 Message Broker
<%
>
< -
o essage Device Shadow
Topics
deviceId/shadow/update
o deviceId/shadow/update/delta
Message Ldeviceldfshadowfupdatefaccepted

D
L]
=

A device reports initial device state by publishing that state as a message
to the update topic deviceID/shadow/update.

. The Device Shadow reads the message from the topic and records the

device state in a persistent data store.

. A device subscribes to the delta messaging

topic deviceld/shadow/update/delta upon which device-related state
change messages will arrive.

. A component of the solution publishes a desired state message to the

topic deviceID/shadow/update and the Device Shadow tracking this
device records the desired device state in a persistent data store.

. The Device Shadow publishes a delta message to the

topic deviceld/shadow/update/delta, and the Message Broker sends the
message to the device.

. A device receives the delta message and performs the desired state

changes.

. A device publishes an acknowledgment message reflecting the new state

to the update topic deviceID/shadow/update and the Device Shadow
tracking this device records the new state in a persistent data store.

. The Device Shadow publishes a message to

the deviceld/shadow/update/accepted topic.

. A component of the solution can now request the updated state from the

Device Shadow.

dWsS

Page 13 N

Amazon Web Services — AWS Well-Architected Framework

All 10T solutions should allow devices to upgrade their own firmware.
Supporting firmware upgrades without human intervention is both critical for
scaling solutions and for delivering a successful long-term IoT offering.

AWS IoT Device Management provides a secure and easy way for you to manage
IoT deployments including executing and tracking the status of firmware
updates. AWS IoT Device Management uses the MQTT protocol in conjunction
with AWS IoT message broker and AWS IoT Jobs to send firmware update
commands to devices as well as receive the status of those firmware updates
over time.

An IoT solution should implement firmware updates using AWS IoT Jobs
shown in the following diagram to deliver this functionality.

) Message ‘" Message Broker
Device o N7
«a>
o Message . Device Management\

™~ Topics

o deviceIld/jobs/notify-next

+ deviceId/jobs/start-next

o deviceId/jobs/start-next/accepted

\deviceld/j obs/jobId/update

JSON

f=—2

®] .
https://../firmware/version/new E € —_— /

1. A device subscribes to the IoT job notification topic
deviceld/jobs/notify-next upon which IoT job notification messages will
arrive.

2. A device publishes a message to deviceld/jobs/start-next to start the
next job and get the next job, its job document, and other details
including any state saved in statusDetails.

3. The AWS IoT Jobs service retrieves the next job document for the
specific device and sends this document on the subscribed topic
deviceld/jobs/start-next/accepted

dWsS

Page 14 S~—"1

Amazon Web Services — AWS Well-Architected Framework

4. A device then performs the actions specified by the job document using
the deviceld/jobs/jobld/update MQTT topic to report on the progress of

the job.

5. During the upgrade process, a device downloads the firmware using a
pre-signed URL for Amazon S3.

6. The device publishes an update status message to the job
topic deviceld/jobs/jobld/update reporting success or failure

7. Because this job's execution status has changed to final state, the next
IoT job available for execution (if any) will change.

The Pillars of the Well-Architected
Framework

This section describes each of the pillars and includes definitions, best practices,
questions, considerations, and essential AWS services that are relevant when
architecting solutions for AWS IoT.

The Operational Excellence pillar includes operational practices and
procedures used to manage production workloads. Operational excellence
comprises how planned changes are executed, as well as responses to
unexpected operational events. Change execution and responses should be
automated. All processes and procedures of operational excellence should be
documented, tested, and regularly reviewed.

Design Principles

In addition to the overall Well-Architected Operational Excellence design
principles, there are several design principles for operational excellence for IoT
in the cloud:

e Plan for device provisioning: Design your device provisioning
process to create your initial device identity in a secure location.
Implement a public key infrastructure (PKI) that is responsible for
distributing unique certificates to IoT devices. PKI can be done
completely offline with a Hardware Security Module (HSM) during the

dWs

Page 15

Amazon Web Services — AWS Well-Architected Framework

manufacturing process. You can also leverage technologies that can
manage the Certificate Authority (CA) and HSM in the cloud.

¢ Implement device bootstrapping: Design the ability for devices to
programmatically update configuration information using a globally
distributed bootstrap API. A bootstrapping design will ensure you can
programmatically send the device new configuration settings by making a
change in the cloud. These changes should include settings such as which
IoT endpoint to communicate with, how frequently to send an overall
status for the device, and any updated security settings such as server
certificates. The process of bootstrapping goes beyond initial
provisioning and plays a critical role in device operations by providing a
programmatic way to update device configuration through the cloud.

¢ Document device communication patterns: In an IoT application,
device behavior is documented by hand at the hardware level. In the
cloud, an operations team must formulate how the behavior of a device
will scale once deployed to a fleet of devices. A cloud engineer should
review the device communication patterns and should extrapolate the
total expected inbound and outbound traffic of device data and the
expected infrastructure needed in the cloud to support the entire fleet of
devices. During operational planning, these patterns should be measured
using device and cloud-side metrics to ensure expected usage patterns
are met in the system.

¢ Implement over the air (OTA) updates: In order to benefit from
long-term investments in hardware, you must be able to continuously
update the firmware on the devices with new capabilities. In the cloud,
you can apply a robust firmware update process that allows you to target
specific devices for firmware updates, roll out changes over time, track
